Clinical Issues in Cutaneous T-cell Lymphoma

Youn H Kim, MD

Department of Dermatology Multidisciplinary Cutaneous Lymphoma Program Stanford Cancer Center & School of Medicine Stanford, CA

Disclosure statement

- Youn Kim, MD
- Steering Committee
 - Eisai, Millennium
- Consultant or Advosory board
 - Kyowa, Celgene, Emergent, Medicis
- Investigator
 - Allos, Kyowa, Merck, Millennium, Seattle Genetics, SHAPE, Ceptaris/Yaupon, Eisai, Genentech

Key Clinical Questions in CTCL

- How can we optimize our diagnostic ability?
- What are the key prognostic factors or markers that can help guide clinical management?
- How do we make optimal treatment decisions with available therapies?
- How can we improve future therapeutics and outcome?

Key Clinical Questions in CTCL

- How can we optimize our diagnostic ability?
 - Better distinguish from inflammatory/benign mimics and specify type of CTCL
- What are the key prognostic factors or markers that can help guide clinical management?
- How do we make optimal treatment decisions with available therapies?
- How can we improve future therapeutics and outcome?

NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines[®])

Non-Hodgkin's Lymphomas

Version 1.2013

Medicare and other insurances follow NCCN guidelines

NCCN.org

NHL => MFSS

Real time updates

Consensus if not evidencebased recommendations National

Comprehensive

NCCN Cancer Network*

NCCN Guidelines Version 1.2013 Mycosis Fungoides/Sezary Syndrome

DIACNOSIS	WORKUP	STAGE
ESSENTIAL:	ESSENTIAL:	(MFSS-2 and MFSS-3)
Biopsy of suspicious skin sites Dermatopathology review of slides USEFUL UNDER CERTAIN SIRCUMSTANCES:	 Complete physical examination Examination of entire skin: assessment of %BSA (palm plus digits ≈1% BSA) and type of skin lesion (patch/plague, tumor, erythroderma) TCR gene rearrangement of peripheral blood lymphocytes if blood involvement suspected Comprehensive metabolic panel LDH 	Stage → Stage <u>See Primary</u> Treatment (MFSS-4)
 IHC of skin biopsy^{a,b,c} (CD2, CD3, CD4, CD5, CD7, CD8, CD20, CD30, CD25, CD56, TIA1, granzyme B, βF1) 	 Palpation of peripheral lymph node regions Palpation for organomegaly/masses Laboratory studies:^f Imaging studies Chest/abdominal/pelvic contrast- enhanced CT or integrated whole body PET-CT 	Stage <u>See Primary</u> Treatment (MFSS-5)
 Molecular analysis for TCR gene rearrangements (assessment of clonality) of skin biopsy; ^a PCR methods^d Assessment of peripheral blood for Sezary cells (in cases where skin is not diagnostic, especially T4) including Sezary 	 CBC with Sezary screen (manual slide review, "Sezary cell prep") Sezary flow cytometric study (optional for T1); CD3, CD4, CD7, CD8, CD26 to assess for expanded CD4+ cells with increased CD4/CD8 ratio or with abnormal immunophenotype, including loss of CD7 or CD26 CBC with Sezary screen (manual slide review, "Sezary cell prep") Sezary flow cytometric study (optional for T1); CD3, CD4, CD7, CD8, CD26 to assess for expanded CD4+ cells with increased CD4/CD8 ratio or with abnormal immunophenotype, including loss of CD7 or CD26 	→ Stage → <u>See Primary</u> IIB → <u>Treatment</u> (MFSS-6)
cell prep, flow cytometry, and PCR for TCR gene rearrangement • Biopsy of suspicious lymph nodes (in absence of definitive	USEFUL IN SELECTED CASES: • Bone marrow biopsy (not required for staging but used to document visceral disease in those suspected to have marrow involvement including B2 blood involvement and in patients with unexplained hematologic abnormality) • Biopsy of suspicious lymph nodes for identical clones (recommend	▼ Stage III ▼ Stage <u>Treatment</u> (MFSS-7)
 skin diagnosis) Assessment of HTLV-1^e serology in at-risk populations. HTLV-1 PCR if serology is indeterminate 	assessment of clonality for all but particularly NCI LN 2-3) or suspected extracutaneous sites • Rebiopsy if suspicious of large cell transformation • Neck CT dTCR gene rearrangement results should be interpreted with	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $

 ^aClinically or histologically non-diagnostic cases. Pimpinelli N, Olsen EA, Santucci M, et al., for the International Society for Cutaneous Lymphoma. Defining early mycosis fungoides. J Am Acad Dermatol 2005;53:1053-1063.
 ^bSee Use of Immunophenotyping and Genetic Testing in Differential

Diagnosis of Mature B-Cell and NK/T-Cell Neoplasms (NHODG-A).

^cTypical immunophenotype: CD2+ CD3+ CD5+ CD7- CD4+ CD8- (rarely CD8+) CD30-/+ cytotoxic granule proteins negative.

^dTCR gene rearrangement results should be interpreted with caution. TCR clonal rearrangement can be seen in non-malignant conditions or may not be demonstrated in all cases of MF/SS. Demonstration of identical clones in skin, blood, and/or lymph node may be helpful in selected cases.

 e See <u>map</u> for prevalence of HTLV-1 by geographic region.

^fSezary syndrome (B2) is as defined on <u>MFSS-2</u>.

^gMany skin-directed and systemic therapies are contraindicated or of unknown safety in pregnancy. Refer to individual drug information.

National Comprehensive Cancer Network[®]

DIAGNOSIS

- ESSENTIAL:
- Biopsy of suspicious skin sites
- Dermatopathology review of slides USEFUL UNDER CERTAIN CIRCUMSTANCES:
- IHC of skin biopsy^{a,b,c} (CD2, CD3, CD4, CD5, CD7, CD8, CD20, CD30, CD25, CD56, TIA1, granzyme B, βF1)
- Molecular analysis for TCR gene rearrangements (assessment of clonality) of skin biopsy;^a PCR methods^d
- Assessment of peripheral blood for Sezary cells (in cases where skin is not diagnostic, especially T4) including Sezary cell prep, flow cytometry, and PCR for TCR gene rearrangement
- Biopsy of suspicious lymph nodes (in absence of definitive skin diagnosis)
- Assessment of HTLV-1^e serology in at-risk populations. HTLV-1 PCR if serology is indeterminate

Current diagnostics, 1/2013

Dermatopathology review CLINICAL-PATHOLOGIC CORRELATION REMAINS KEY Tissue pathology +/- PB/LN flow cytometric data

<u>Ancillary studies:</u> Immunohistochemistry (IHC) - rule out histologic mimics

TCRR PCR for clonality

- demonstration of same clone > 1 site, relevant clone

National Comprehensive Cancer Network[®]

DIAGNOSIS

- ESSENTIAL:
- Biopsy of suspicious skin sites
- Dermatopathology review of slides USEFUL UNDER CERTAIN CIRCUMSTANCES:
- IHC of skin biopsy^{a,b,c} (CD2, CD3, CD4, CD5, CD7, CD8, CD20, CD30, CD25, CD56, TIA1, granzyme B, βF1)
- Molecular analysis for TCR gene rearrangements (assessment of clonality) of skin biopsy;^a PCR methods^d
- Assessment of peripheral blood for Sezary cells (in cases where skin is not diagnostic, especially T4) including Sezary cell prep, flow cytometry, and PCR for TCR gene rearrangement
- Biopsy of suspicious lymph nodes (in absence of definitive skin diagnosis)
- Assessment of HTLV-1^e serology in at-risk populations. HTLV-1 PCR if serology is indeterminate

Current diagnostics, 1/2013

CLINICAL-PATHOLOGIC CORRELATION REMAINS KEY Tissue pathology +/- PB/LN flow cytometric data

<u>Ancillary studies:</u> Immunohistochemistry (IHC)

- rule out histologic mimics

TCRR PCR for clonality

- demonstration of same clone > 1 site, relevant clone

Exploratory diagnostics

How to better distinguish from inflammatory ddx and mimics?

- New IHC markers, FISH to distinguish malignant cell vs. reactive/normal cells
- Gene, epigenetic modulation, miRNA expression profiles

=> <u>NOT</u> READY for clinical use

(needs further validation, better/more controls)

Key Clinical Questions in CTCL

- How can we optimize our diagnostic ability?
 - Better distinguish from inflammatory/benign mimics and specify type of CTCL
- What are the key prognostic factors or markers that can help guide clinical management?
- How do we make optimal treatment decisions with available therapies?
- How can we improve future therapeutics and outcome?

Prognostic factors in cancer management

Cutaneous T-cell lymphoma

Cutaneous T-cell lymphoma

Key clinical factors in CTCL

- Age
 - Worse px in elderly (subset of young/non-cauc bad)
- TNMB/clinical stage
 - Worse with plaque vs. patch, extensive tumors, erythroderma (+ tumors)
 - LN: N0 v N1-2 (relevant clone pos vs neg) v N3 (frank LN dz)
 - Viscera/M (solid organ vs BM)
 - Blood/B0 (relevant clone pos) vs B1 vs B2 vs very high SC load
- MF clinical variants
 - WK (favorable), F-MF (unfavorable)
 - Poikilodermatous (favorable)
- Transformation to aggressive clinical behavior
- Gender, ethnicity (geographic variation)

Arch Dermatol 2003;139:857, J Clin Oncol 2010;28:4730, J Am Acad Dermatol 2009:60:231, Int J Dermatol 2009;48:243, Clin Cancer Res 2012 18:5051

Histologic and laboratory factors in CTCL

- Folliculotropism, large cell transformation
- Tissue tumor cell features
 - Ki-67, CD30, CD25
- Tissue tumor microenvironment
 - TILs (CD8+ CTL), Tregs
- LDH, beta-2 microglobulin, eosinophilia/IgE
- Soluble CD25, CD30, cytokine/cytokine receptor levels

Survival decreased with advancing skin disease (T-class) and overall clinical stage

Agar et al. J Clin Oncol 2010;28:4730

Beyond clinical factors: how can we predict the good from the bad within a stage/IIB?

- Are there clinical factors, biomarkers that distinguish between indolent and aggressive IIB?
- Can we predict which IIB patients will live longer?
- Are there biomarkers for cells in the aggressive disease?
- Are there drugs that target the dysregulated genes or biological pathways?

Beyond clinical factors: how can we predict the good from the bad within a stage/IIB?

- Are there clinical factors, biomarkers that distinguish between indolent and aggressive IIB?
- Can we predict which IIB patients will live longer?
- Are there biomarkers for cells in the aggressive disease?
- Are there drugs that target the dysregulated genes or biological pathways?

Gene expression pattern that distinguish indolent vs. aggressive MF tumors

Key changes in aggressive MF tumors

R Chen et al 2012

Dreaming the future of personalized medicine CTCL Bench to Bedside

Diagnosis

Prognosis

Personalized management

Key Clinical Questions in CTCL

- How can we optimize our diagnostic ability?
 - Better distinguish from inflammatory/benign mimics and specify type of CTCL
- What are the key prognostic factors or markers that can help guide clinical management?
- How do we make optimal treatment decisions with available therapies?
- How can we improve future therapeutics and outcome?

Mycosis Fungoides Treatment of varying skin manifestations

Management of extracutaneous disease

Blood

Viscera

Lymph node Sézary syndromegeneralized erythroderma, keratoderma, severe itching; freq staph aureus infection

NCCN National Comprehensive N Cancer Network [®] M	CCN Guidelines Version 1.2013 ycosis Fungoides/Sezary Syndrome	NCCN Guidelines Index NHL Table of Contents Discussion
DIAGNOSIS ESSENTIAL: • Biopsy of suspicious skin sites • Dermatopathology review of slides USEFUL UNDER CERTAIN CIRCUMSTANCES:	 WORKUP ESSENTIAL: Complete physical examination Examination of entire skin: assessment of %BSA (palm plus digits ≈1% BSA) and type of skin lesion (natch/clanue, tumor, entthreaderme) TCR gene rearrangement of peripheral blood lymphocytes i blood involvement suspected Comprehensive metabolic pane LDH 	STAGE (MFSS-2 and MFSS-3) f IA Stage IA IA IA (MFSS-4)
 IHC of skin biopsy^{a,b,c} (CD2, CD3, CD4, CD5, CD7, CD8, CD20, CD30, CD25, CD56, TIA1, granzyme B, βF1) Molecular analysis for TCR gene rearrangements (assessment of clonality) of skin biopsy;^a PCR methods^d Assessment of peripheral blood for Sezary cells (in cases where skin is not diagnostic, where skin biopsy;^a PC) 	 Palpation of peripheral lymph node regions Palpation for organomegaly/masses Laboratory studies:^f CBC with Sezary screen (manual slide review, "Sezary cell prep") Sezary flow cytometric study (optional for T1); CD3, CD4, CD7, CD8, CD26 to assess for expanded CD4+ cells with increased CD4/CD8 ratio or with abnormal immunophenotype, Imaging studies Chest/abdominal/pelvic contrasent enhanced CT or integrated who body PET-CT (≥T2, large cell transformed or folliculotropic MF, or with palpable adenopathy or abnormal laboratory studies) Pregnancy testing in women of child-bearing age^g 	$ \begin{array}{c c} \text{stage} & \underbrace{\text{See Primary}}_{\text{Treatment}} \\ \text{IB-IIA} & \underbrace{\text{Stage}}_{(\text{MFSS-5})} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $
 especially 14) Including Sezary cell prep, flow cytometry, and PCR for TCR gene rearrangement Biopsy of suspicious lymph nodes (in absence of definitive skin diagnosis) Assessment of HTLV-1^e secology in at-risk populations 	 including loss of CD7 or CD26 USEFUL IN SELECTED CASES: Bone marrow biopsy (not required for staging but used to document viscera disease in those suspected to have marrow involvement including B2 blood involvement and in patients with unexplained hematologic abnormality) Biopsy of suspicious lymph nodes for identical clones (recommend assessment of clonality for all but particularly NCI LN 2-3) or suspected extracutaneous sites 	I Stage <u>See Primary</u> III <u>Treatment</u> (MFSS-7) Stage <u>See Primary</u> Treatment
HTLV-1 PCR if serology is indeterminate	 Rebiopsy if suspicious of large cell transformation Neck CT 	IV (<u>MFSS-8</u>)

Stage-based treatment algorithm

Blood 2007;110:1713 <u>www.nccn.org</u> => NHL => MFSS

Current Clinical Management of CTCL, 2013 www.nccn.org => NHL => MF/SS

*ECP = photopheresis

** Methotrexate, liposomal doxorubicin, gemcitabine, pentostatin, chlorambucil, etoposide, pralatrexate

Key treatment selection factors

- Clinical stage/TNMB
 - MF vs. SS
- Other prognostic factors
 - Large cell transformation
 - Folliculotropic disease
- Age, co-morbidities, concomitant meds
- Availability/access issues
 - TSEBT, photopheresis
 - US vs. other countries
 - Insurance barriers

Actuarial survival of stage IA vs. control population: Life-expectancy is not altered in patients with limited patch/plaque disease

Reliable skin responses with skin-directed options as primary therapy in stages I-IIA (skin-limited, patch/plaque disease)

Skin Therapy	CR	ORR
Topical steroids	45-65%	75-95%
Bexarotene gel	20-35%	50-75%
Topical NM	25-70%	50-90%
nbUVB	45-75%	75-100%
PUVA	50-80%	85-100%
TSEBT (<u>></u> 30 Gy)	80-90%	100%

• Systemic agents (e.g., bexarotene, IFN, methotrexate, vorinostat, romidepsin) 30-45% RR in skin with low CR rates

Arch Dermatol 2003;139:165, J Am Acad Dermatol 2003;49:801, J Am Acad Dermatol 2002;47:191, Arch Dermaol 2005;141:305, Arch Dermatol 2011;147:561, Arch Dermatol 2001;137:581, J Clin Oncol 2007;25:3109, J Clin Oncol 2010;28:4485

Clinical response to topical nitrogen mustard gel NDA re-filed; expect approval end of 2013

Narrow band UVB

Localized RT in Woringer Kolopp disease

When need to intensify therapy in MF/SS "Combination strategies" are utilized

- Skin-directed + Systemic
 - Phototherapy + retinoid
 - Phototherapy + IFN
 - Phototherapy + photopheresis*
 - TSEBT + photopheresis*
- Systemic + Systemic
 - Retinoid + IFN
 - Bexarotene + denileukin diftitox
 - Photopheresis* + retinoid
 - Photopheresis* + IFN
 - Photopheresis* + retinoid + IFN

Is combination therapy "better"?

- No comparative data
- Lower doses of each

(less toxicity)

• Synergy?

*Photopheresis comb more appropriate in pts with blood involvement,B1-2

Appreciating biologic and clinical differences/overlap in MF vs. SS: translating into management

Oncogenomic analysis of mycosis fungoides reveals major differences with Sézary syndrome Blood 2009 113:127-36

Brief report

Sézary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors

*James J. Campbell,¹ *Rachael A. Clark,¹ Rei Watanabe,¹ and Thomas S. Kupper¹

¹Department of Dermatology, Brigham and Women's Hospital/Harvard, Boston, MA

Blood 2010;116:767-771

Distinctive supportive management in Sezary syndrome

Management of Sezary Syndrome, B2/stage IV

- Stratification based on blood Sezary burden
- Given risk for staph sepsis, utilize agents that spare further immune dysfunction
- Low-intermediate Sezary burden
 - "Milder" systemic therapies: biologics (bexarotene, photopheresis, interferon), methotrexate
- High Sezary burden (> 5-10K/mm³)
 - Combination therapies
 - Romidepsin
 - Alemtuzumab
- Refractory disease
 - Alemtuzumab
 - Clinical trials

Key Clinical Questions in CTCL

- How can we optimize our diagnostic ability?
 - Better distinguish from inflammatory/benign mimics and specify type of CTCL
- What are the key prognostic factors or markers that can help guide clinical management?
- How do we make optimal treatment decisions with available therapies?
- How can we improve future therapeutics and outcome?

Why do we need better therapies?

Efficacy of Systemic Agents in CTCL

	Efficacy data for FDA approval					
Agent (Class)	Indication Year Study		N	ORR	DOR	
Romidepsin (HDAC inhibitor)	CTCL with prior systemic	2009	Pivotal	96	34%	15 mo
	therapy		Supportive	71	35%	11 mo
Denileukin diftitox (Fusion protein)	Tumors that express CD25	1999, 2008	Pivotal	71	30%	4 mo
Bexarotene (RXR activator)	Cutaneous manifestations	1999	Pivotal	62	32%	5+ mo
Vorinostat	Need better therapies			30%	6+ mo	
(HDAC inhibitor)	More options				24%	4 mo

Era of targeted therapies *Huge impact in cutaneous oncology: melanoma (vemurafenib), BCCs (vismodegib)*

- Need understanding of driver targets
- Kill tumor/bad cells but spare good cells
- Target the environment to enhance anti-tumor effects
- Improved technology for increased potency
- Consider combination strategies as appropriate
 - Multiple targets/pathways
 - Complementary targets
 - How to optimize efficacy without additive toxicities

Tumor cell surface molecules (e.g., CD4, CD25, CD30, CD40, CD52, CD158k, CCR4) CTCL

Microenvironment, immune mechanisms (e.g., vasculature, immune modulation)

Tumor proliferation, metabolism, survival, progression mechanisms:

Signal transduction/transcription activation pathways (e.g., ubiquitin-proteasome, AKT/PI3K/mTOR, RAS/RAF/MEK, MAPK) Apoptotic pathways (e.g. Bcl/Bax, TNFR, Fas, miRNAs) Epigenetics (e.g., histone, non-histone proteins)

Metabolic/survival pathways (e.g., RFC-1, PARP)

Tumor cell surface molecules (e.g., CD4, CD25, CD30, CD52, CD158k, CCR4) CTCL

Microenvironment, immune mechanisms (e.g., vasculature, immune modulation)

Tumor proliferation, metabolism, survival, progression mechanisms:

Signal transduction/transcription activation pathways (e.g., ubiquitin-proteasome, AKT/PI3K/mTOR, RAS/RAF/MEK, MAPK) Apoptotic pathways (e.g. Bcl/Bax, TNFR, Fas, miRNAs)

Epigenetics (e.g., histone, non-histone proteins) *Metabolic/survival pathways* (e.g., RFC-1, PARP)

Tumor cell surface molecules (e.g., CD4, CD25, CD30, CD40, CD52, CD158k, CCR4) CTCL

Microenvironment, immune mechanisms (e.g., vasculature, immune modulation)

Tumor proliferation, metabolism, survival, progression mechanisms:

Signal transduction/transcription activation pathways (e.g., ubiquitin-proteasome, AKT/PI3K/mTOR, RAS/RAF/MEK, MAPK) Apoptotic pathways (e.g. Bcl/Bax, TNFR, Fas, miRNAs)

Epigenetics (e.g., histone, non-histone proteins) *Metabolic/survival pathways* (e.g., RFC-1, PARP)

Types of targeted therapies in lymphoma, 2013

- More and fancier monoclonal antibodies
 - Cell surface molecules
 - Naked mAbs
 - newer engineered, "high-tech" mAbs
 - MAb drug conjugates (ADCs)
 - Radiolabeled mAbs

Small molecule inhibitors/agonists

Multitude of potential targets/pathways, need disease relevance

Pralatrexate with improved tumor selectivity

- Improved anti-folate agent => ↑ cellular uptake/retention, tumor > normal
- High affinity for RFC-1; efficient substrate for polyglutamylation by FPGS
- Antifolate activity via the inhibition of DHFR.

Pralatrexate FDA-approved in systemic PTCL, 2009

doi:10.1182/blood-2011-11-390211

Identification of an active, well-tolerated dose of pralatrexate in patients with relapsed or refractory cutaneous T-cell lymphoma

Steven M. Horwitz, Youn H. Kim, Francine Foss, Jasmine M. Zain, Patricia L. Myskowski, Mary Jo Lechowicz, David C. Fisher, Andrei R. Shustov, Nancy L. Bartlett, Maria L. Delioukina, Tony Koutsoukos, Michael E. Saunders, Owen A. O'Connor and Madeleine Duvic

Doses <u>></u> 15 mg/m ² , 3/4 weeks (IV)	61% ORR
Optimal dose in CTCL, 15 mg/m ² , 3/4 weeks (IV)	45% ORR
DOR at 6 mo	73%

Pralatrexate response in MF, stage IIB Good option in MF with LCT

Pretreatment

Partial Response post cycle 3

MD Anderson CC

Pralatrexate response,

Pc CD30+ ALCL

Stanford CC

Tumor cell surface molecules (e.g., CD4, CD25, CD30, CD52, CD158k, CCR4) CTCL

Microenvironment, immune mechanisms (e.g., vasculature, immune modulation)

Tumor proliferation, metabolism, survival, progression mechanisms:

Signal transduction/transcription activation pathways (e.g., ubiquitin-proteasome, AKT/PI3K/mTOR, RAS/RAF/MEK, MAPK) Apoptotic pathways (e.g. Bcl/Bax, TNFR, Fas, miRNAs)

Epigenetics (e.g., histone, non-histone proteins) *Metabolic/survival pathways* (e.g., RFC-1, PARP)

Newer generation monoclonal antibodies in cutaneous T-cell lymphoma

- Fully human mAbs
 - Anti-CD4 mAb (zanolimumab)
- Engineered mAbs, modified Fc portion to enhance biologic activity
 - Defucosylated anti-CCR4 mAb, mogamulizumab (KW-0761)
- Antibody drug conjugates

- Anti-CD30 ADC, brentuximab vedotin (SGN-35)

Defucosylated humanized anti-CCR4 antibody, KW-0761

Higher ADCC due to a defucosylated Fc region by POTELLIGENT[®]

Shinkawa et al, J Biol Chem 2003;278:3466 Ishii et al, Clin Cancer Res 2010;16:1520

CCR4 (CC chemokine receptor 4)

Highly expressed (> 90%) in ATL Great clinical response in skin/blood

> Ishida et al, Clin Cancer Res 2003;9:3625 Courtesy T. Ishida

VOLUME 30 · NUMBER 8 · MARCH 10 2012

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Defucosylated Anti-CCR4 Monoclonal Antibody (KW-0761) for Relapsed Adult T-Cell Leukemia-Lymphoma: A Multicenter Phase II Study

Takashi Ishida, Tatsuro Joh, Naokuni Uike, Kazuhito Yamamoto, Atae Utsunomiya, Shinichiro Yoshida, Yoshio Saburi, Toshihiro Miyamoto, Shigeki Takemoto, Hitoshi Suzushima, Kunihiro Tsukasaki, Kisato Nosaka, Hiroshi Fujiwara, Kenji Ishitsuka, Hiroshi Inagaki, Michinori Ogura, Shiro Akinaga, Masao Tomonaga, Kensei Tobinai, and Ryuzo Ueda

Approved in Japan 2012 for pts with ATL

Phase II study in progress in the US- NCT01626664

KW 0761 or Investigator's Choice in Subjects With Previously Treated Adult T-cell Leukemia-Lymphoma (ATL)

KW-0761, a Monoclonal Antibody Directed against CC Chemokine Receptor type 4 (CCR4), in CTCL patients: Results of a Phase 1 /2 Study

Madeleine Duvic,¹ Lauren Pinter-Brown,² Francine Foss,³ Lubomir Sokol,⁴ Jeffrey Jorgensen,⁵ George Spitalny,⁶ and Youn H Kim⁷

¹Department of Dermatology and ⁵Department of Hematopathology, UT MD Anderson Cancer Center; ² Geffen School of Medicine at UCLA; ³Department of Medical Oncology, Yale Cancer Center; ⁴Department of Malignant Hematology, H Lee Moffitt Cancer Center and Research Institute; ⁶Kyowa Hakko Kirin Pharma, Inc.; ⁷Department of Dermatology, Stanford Cancer Center

> American Society of Hematology 52nd Annual Meeting December 4–7, 2010

Expression of CCR4 Receptor for CC chemokines, MDC, TARC

ALK-negative ALCL

MF/SS

Greater proportion of CTCL cells have CCR4 expression than healthy T-cells

Ishida T, et al. Clin Cancer Res. 2004;10:7529, Ferenczi K et al. J Invest Dermatol 2002;119:1405

Overall response rate in phase 1/2 study

		No. of patients				
	ORR	CR	PR	SD	PD	
Sezary Syndrome (N=17)	47%	1	7	7	2	
Mycosis Fungoides (N=21)	33%	1	6	10	4	
TOTAL (N=38)	42%	2	13	17	6	

Intravenous administration, weekly x 4, then every 2 wks

Best Response in SS Patients by Compartment

- 8/17 (47%) of SS patients with global response (ORR)
- 15/17 (88%) of SS patients had response in blood
 9/17 (53%) had CR in blood

Case Study: Patient 03-Stanford (SS; Stage IVA; 6 Prior Therapies; 0.3 mg/kg)

Pretreatment Course 1 Day 1

Post treatment Post Course 11

Response in Blood: Patient 01-Stanford (SS; Stage IVA; 6 prior therapies; 0.1 mg/kg) Pre-treatment

Response in Blood: Patient 01-Stanford Post-treatment

KW-0761 Clinical Development Summary

- Clinical responses are most impressive in the skin and blood compartments in ATL and CTCL
- Absence of severe infections ($\leftarrow \rightarrow$ alemtuzumab)

Phase III RCT in CTCL ongoing for FDA approval in the US

Targets for Therapy in Cutaneous Lymphoma

Tumor cell surface molecules (e.g., CD4, CD19, CD20, CD22, CD25, **CD30**, CD40, CD52, CD158k, CCR4) Cutaneous lymphoma

Microenvironment, immune mechanisms (e.g., vasculature, immune modulation)

Tumor proliferation, metabolism, survival, progression mechanisms:

Signal transduction/transcription activation pathways (e.g., ubiquitin-proteasome, AKT/PI3K/mTOR, RAS/RAF/MEK, MAPK) Apoptotic pathways (e.g. Bcl/Bax, TNFR, Fas, miRNAs) Epigenetics (e.g., histone, non-histone proteins)

Metabolic/survival pathways (e.g., RFC-1, PARP)

CD30+ primary cutaneous lymphoproliferative disorders

- Lymphomatoid papulosis
- Pc CD30+ anaplastic large cell lymphoma
- Mycosis fungoides with CD30 expression
- other TCLs and BCLs may express CD30

Targeted therapy in CD30+ LPDs

 CD30, an attractive target, as CD30 expression is limited in normal cells, but increased in proliferative or malignant lymphocytes => good tumor selectivity

Brentuximab Vedotin Mechanism of Action Antibody Drug Conjugate

Monomethyl auristatin E (MMAE), microtubule-disrupting agent Protease-cleavable linker Anti-CD30 monoclonal antibody

Brentuximab vedotin (SGN-35) in systemic lymphoma

- Highly effective in relapsed/refractory HL and sALCL
- Adverse events were manageable including peripheral neuropathy (85% sig improved/reversible)

Received accelerated approval by FDA in HL and sALCL (8/2011) => 2nd mAb-drug-conjugate (ADC) to be approved

ASH abstract #797, presented 12/10/2012

Brentuximab vedotin demonstrates clinical activity in mycosis fungoides / Sézary syndrome

Krathen M¹, Bashey S¹, Sutherland K¹, Sundram U¹, Nagpal S¹, Salva K³, Wood G³, Advani R¹, Hoppe RH¹, Reddy S¹, Pulitzer M², Horwitz S², Kim YH¹

¹Stanford Cancer Institute, Stanford, CA, USA ²Memorial Sloan-Kettering Cancer Center, New York, NY, USA ³University of Wisconsin, Madison, WI, USA

CD30: Target in MF/SS

- HL and sALCL with consistent expression of CD30 on tumor cells and high response rates
- Variable CD30 expression on neoplastic cells of MF
 - Transformed MF with more frequent and greater CD30 expression, 30-50%
 - Non-transformed MF, 0-15% (majority of MF)

Am J Surg Pathol. 2009;33:1860 Clin Cancer Res 2004;10:5587, Blood. 2012;119;1643.

Percent Change in Skin mSWAT At Best Clinical Response

Cycle at Best Response

Clinical Response by Stage

Stage	Response Rate	CR	PR	SD	PD
IB (n=2)	100%	0	2	0	0
IIB* (n=11)	91%	0	10	1	0
IVA**/B (n=6)	33%	1	1	0	4
Total n=19**	74%	1	13	1	4

*All 11 either LCT or FMF

** 1 subject non-evaluable for response

87 yo M with MF IIB, LCT

Screening

Cycle 6

87 yo M with MF IIB, LCT

Screening

Subject 12: 66 yo F with MF IVB, LCT w/ oropharyngeal involvement Group B (10-50%): Max CD30 TLI 20% Best Response: PR

Screening

Cycle 10

Screening

Cycle 10

Summary of clinical development of brentuximab vedotin in CTCL

- Two separate investigator-initiated studies (Stanford, MD Anderson) show consistent data of promising responses
 MF (regardless of tissue CD30), LyP, pcALCL
- Acceptable toxicities
 - PN most common, concern of PML being observed

Phase III RCT in CTCL ongoing in the US and Europe for approval

Immunotherapy strategies in cancer

Induction of long-lasting responses and improving survival with partnering with immune strategies

Immunotherapy strategies in cutaneous lymphoma

Immunotherapy strategies in cutaneous lymphoma

Immune modulation of tumor microenvironment with mAbs

Modulating microenvironment & immune mechanisms

	Agent	Target	Conjugate	Disease
	Bevacizumab	VEGF		lymphoma
	Endostatin	Endothelial cell		lymphoma
	Ipilimumab	CTLA-4		Solid tumor/lymphoma
	Lenalidomide	Multiple		Hematologic malignancies
	TLR agonists	TLR		lymphoma
	Anti-PD-1 mAbs	PD-1		Solid tumor/hematolymph
	Anti-PD-L1 mAbs	PD-L1		Solid tumor/hematolymph
	IDO inhibitors	IDO+ DCs, tumor		Solid tumor/hematolymph

Renewed interest in immunotherapy

Ann Oncol 2010;21:683, J Pathol 2010;220:404, 509, Lancet Oncol 2010;11:1074

Programmed Death-1 (PD-1) and ligands B7-H1/PD-L1 and B7-DC/PD-L2: Pivotal role in maintaining immunosuppressive tumor microenvironment

Curr Opin Immunol 2012;24:207

The NEW ENGLAND

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

ESTABLISHED IN 1812

Safety, of *I*

Suzanne L. Topalian, M.D. David C. Smith, M.D., Davi Jeffrey A. Sosman, M.D., Scott J. Antonia, M.D., Ph.D., L Lieping Chen, M.D., Ph.D., Wil Tracee L. McMiller, M.S., Haiying Daniel McDonald, M.B.A., G

Safety and Activity of Anti–PD-L1 Antibody in Patients with Advanced Cancer

Julie R. Brahmer, M.D., Scott S. Tykodi, M.D., Ph.D., Laura Q.M. Chow, M.D., Wen-Jen Hwu, M.D., Ph.D., Suzanne L. Topalian, M.D., Patrick Hwu, M.D., Charles G. Drake, M.D., Ph.D., Luis H. Camacho, M.D., M.P.H., John Kauh, M.D., Kunle Odunsi, M.D., Ph.D., Henry C. Pitot, M.D., Omid Hamid, M.D.,
Shailender Bhatia, M.D., Renato Martins, M.D., M.P.H., Keith Eaton, M.D., Ph.D., Shuming Chen, Ph.D., Theresa M. Salay, M.S., Suresh Alaparthy, Ph.D., Joseph F. Grosso, Ph.D., Alan J. Korman, Ph.D., Susan M. Parker, Ph.D., Shruti Agrawal, Ph.D., Stacie M. Goldberg, M.D., Drew M. Pardoll, M.D., Ph.D., Ashok Gupta, M.D., Ph.D., and Jon M. Wigginton, M.D.

N Engl J Med 2012;366:2455-65.

Expression of PD-1 and PD-L1 in MF skin tissue: Inverse correlation of PD-1 and PD-L1 with disease severity

T1/T2

Т3

T3 + LCT

Am J Dermatopathol 2012:34:126

TABLE I. PD-1 Expression in CTCL Determined by Immunohistochemistry

Anti-PD1/PD-L1 mAbs in clinical development

 MDX-1105/BMS-936559, MDX-1106/BMS-936558 (Medarex/Bristol-Myers Squibb), MK-3475 (Merck), CT-011 (Cure Tech/Teva), AMP-224 (Amplimmune/GSK)

Anti-PD-L1 mAb opened for enrollment at Stanford:

- A phase I, open-label, dose-escalation study of the safety and pharmacokinetics of MPDL3280A administered intravenously as a single agent to patients with locally advanced or metastatic solid tumors or <u>hematologic malignancies (Genentech)</u>
- MPDL3280A, a phage-derived human IgG1 mAb
- Targets PD-L1 on APCs or tumor cells, prevents interaction with PD-1 on T-cells

Stage IB MF (h/o phototx, bexarotene, anti-CD4 mAb, forodesine, CpG+RT, lenalidomide, sapacitabine, enzastaurin, TSEBT)

11/20/2012 (pre-treatment) mSWAT 36 (20 plaque, 16 patch)

2/19/2013 (C5D1) mSWAT 12 (6 patch, 6 plaque)

Stage IB MF (h/o phototx, bexarotene, anti-CD4 mAb, forodesine, CpG+RT, lenalidomide, sapacitabine, enzastaurin, TSEBT)

pre-treatment (11/20/2012)

C5D1 (2/19/2013)

Harnessing the graft-versus-lymphoma effect in allo HSCT as the ultimate cellular immune therapy

Donor Immune System to destroy lymphoma cells A New Approach in Donor Cell Transplant Non-Myeloablative Regimen with TLI/ATG "Protective conditioning"

Mycosis fungoides, stage IVA w/ LCT in skin/LNs: CRPre-TSEBT2.0+ yr (NED, no GVHD)

Sezary syndrome, stage IVA w/ LCT in skin/LNs: CRPre-TSEBT1.5+ yr (NED, no GVHD)CD4+/CD26-: 99%, abs 19,780CD4+/CD26-: normalized

Sezary syndrome, stage IVA w/ LCT in skin/LNs: CR

Pre-transplant

1.5+ yr (NED, no GVHD)

Reconstitution of TCRβ repertoire after non-myeloablative allogeneic HSCT

Pre-TSEBT

Pre-TLI/ATG

am: MP 12/22/09

Day +30

Day +60

Day +540

Day +180

3D Histogram: MP 3/12/10

Day +270

Immunotherapy strategies in cutaneous lymphoma

Key Clinical Issues in CTCL: Take home summary

• How can we optimize our diagnostic ability?

=> Utilize appropriate ancillary studies for optimal clinicalpathologic diagnosis

• What are the key prognostic factors or markers that can help guide clinical management?

=> Integration of clinical, path, standard molecular studies for overall prognosis, to guide management

How do we make optimal treatment decisions with available therapies?

=> Stage-based decision, MF v SS, other prog, availability, comorbidiity related selection; utilize NCCN guidelines

How can we improve future therapeutics and outcome?
 => Pursue targeted/tumor selective tx + partnership with immune strategies to improve long-term outcome

Stanford Multidisciplinary Cutaneous Lymphoma Group

Wen-Kai Weng Sally Arai Katherine Wolpin BMT partners